Modification of substrate specificity of L-arginine oxidase for detection of l-citrulline

Author:

Yamamoto Kei1ORCID,Masakari Yosuke2,Araki Yasuko2,Ichiyanagi Atsushi2,Ito Kotaro2

Affiliation:

1. Kikkoman Biochemifa Company

2. Kikkoman Corporation

Abstract

Abstract Enzymatic detection of citrulline, a potential biomarker for various diseases, is beneficial. However, determining citrulline levels requires expensive instrumental analyses and complicated colorimetric assays. Although L-amino acid oxidase/dehydrogenase is widely used to detect l-amino acids, an l-citrulline-specific oxidase/dehydrogenase has not been reported. Therefore, in this study, we aimed to develop an l-citrulline-specific enzyme by introducing a mutation into l-arginine oxidase (ArgOX) derived from Pseudomonas sp. TPU 7192 to provide a simple enzymatic l-citrulline detection system. The ratio of the oxidase activity against l-arginine to that against l-citrulline (Cit/Arg) was 1.2%, indicating that ArgOX could recognize l-citrulline as a substrate. In the dehydrogenase assay, the specific dehydrogenase activity towards l-arginine was considerably lower than the specific oxidase activity. However, the specific dehydrogenase activity towards l-citrulline was only slightly lower than the oxidase activity, resulting in improved substrate specificity with a Cit/Arg ratio of 49.5%. To enhance the substrate specificity of ArgOX, we performed site-directed mutagenesis using structure-based engineering. The 3D model structure indicated that E486 interacted with the l-arginine side chain. By introducing the E486 mutation, the specific dehydrogenase activity of ArgOX/E486Q for l-citrulline was 3.25 ± 0.50 U/mg, which was 3.8-fold higher than that of ArgOX. The Cit/Arg ratio of ArgOX/E486Q was 150%, which was higher than that of ArgOX. Using ArgOX/E486Q, linear relationships were observed within the range of 10–500 µM l-citrulline, demonstrating its suitability for detecting citrulline in human blood. Consequently, ArgOX/E486Q can be adapted as an enzymatic sensor in the dehydrogenase system.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3