Fatty acids abrogate the growth-suppressive effects induced by inhibition of cholesterol flux in pancreatic cancer cells

Author:

Li Yuchuan1,Amrutkar Manoj2,Finstadsveen Anette Vefferstad2,Dalen Knut Tomas1,Verbeke Caroline S2,Gladhaug Ivar P.1

Affiliation:

1. University of Oslo

2. Oslo University Hospital Rikshospitalet

Abstract

Abstract Background Despite therapeutic advances, the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. Metabolic reprogramming is increasingly recognized as a key contributor to tumor progression and therapy resistance in PDAC. One of the main metabolic changes essential for tumor growth is altered cholesterol flux. Targeting cholesterol flux appears an attractive therapeutic approach, however, the complex regulation of cholesterol balance in PDAC cells remains poorly understood. Methods The lipid content in human pancreatic duct epithelial (HPDE) cells and human PDAC cell lines (BxPC-3, MIA PaCa-2, and PANC-1) was determined. Cells exposed to eight different inhibitors targeting different regulators of lipid flux, in the presence or absence of oleic acid (OA) stimulation were assessed for changes in viability, proliferation, migration, and invasion. Intracellular content and distribution of cholesterol was assessed. Lastly, proteome profiling of PANC-1 exposed to the SOAT1 inhibitor avasimibe, in presence or absence of OA, was performed. Results PDAC cells contain more free cholesterol but less cholesteryl esters and lipid droplets than HPDE cells. Exposure to different lipid flux inhibitors increased cell death and suppressed proliferation, with different efficiency in the tested PDAC cell lines. Avasimibe had the strongest ability to suppress proliferation across the three PDAC cell lines. All inhibitors showing cell suppressive effect disturbed intracellular cholesterol flux and increased cholesterol aggregation. OA improved overall cholesterol balance, reduced free cholesterol aggregation, and reversed cell death induced by the inhibitors. Treatment with avasimibe changed the cellular proteome substantially, mainly for proteins related to biosynthesis and metabolism of lipids and fatty acids, apoptosis, and cell adhesion. Most of these changes were restored by OA. Conclusions The study reveals that disturbing the cholesterol flux by inhibiting the actions of its key regulators can yield growth suppressive effects on PDAC cells. The presence of fatty acids restores intracellular cholesterol balance and abrogates the alternations induced by cholesterol flux inhibitors. Taken together, targeting cholesterol flux might be an attractive strategy to develop new therapeutics against PDAC. However, the impact of fatty acids in the tumor microenvironment must be taken into consideration.

Publisher

Research Square Platform LLC

Reference69 articles.

1. Park W, Chawla A, O’Reilly EM. Pancreat Cancer: Rev JAMA. 2021;326(9):851–62.

2. Siegel RL, Miller KD, Fuchs HE, Jemal A, Cancer statistics. 2022. CA: A Cancer Journal for Clinicians. 2022;72(1):7–33.

3. Pancreatic cancer: A review of epidemiology, trend, and risk factors;Hu JX;World J Gastroenterol,2021

4. More deaths from pancreatic cancer than breast cancer in the EU by 2017;Ferlay J;Acta Oncol,2016

5. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States;Rahib L;Cancer Res,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3