Controlling factors of latitudinal distribution of dissolved organic matter in the upper layers of the Indian Ocean

Author:

Shigemitsu Masahito1ORCID,Sasaoka Kosei1,Wakita Masahide1,Yokokawa Taichi1,Hashioka Taketo1,Arulananthan K.2,Murata Akihiko1

Affiliation:

1. JAMSTEC: Kaiyo Kenkyu Kaihatsu Kiko

2. National Aquatic Resources and Development Agency

Abstract

Abstract We studied chromophoric (CDOM) and fluorescent (FDOM) dissolved organic matter (DOM), and dissolved organic carbon in surface waters to determine the factors controlling the geographical distribution of DOM along two meridional transects in the Indian Ocean. For CDOM, we calculated the absorption coefficients, spectral slope, and absorption coefficient ratio from the observed absorption spectra. For FDOM, we calculated the biological (BIX) and humification (HIX) indices from the excitation emission matrices (EEMs); parallel factor analysis of the EEMs identified three fluorescent components, i.e., two humic-like and one protein-like. Using these DOM parameters, a factor analysis extracted fewer latent variables than the observed variables to account for the geographical distributions. We obtained three factors (F1, F2, and F3) which explained ~ 84% of the variance in the observed data. From the factor loadings, F1, F2, and F3 were the effects of net primary production-derived DOM and its horizontal transport, photodegradation, and vertical transport by physical processes. We characterized seven marine biogeochemical provinces by factor scores. F1 scores gradually decreased from the northernmost to the Antarctic province, with a small maximum around the subtropical front. F2 scores were highest in the subtropical province and decreased in both the northward and southward directions. F3 scores were high in the Antarctic and northernmost provinces, and lowest in the subtropical province. Only BIX was insufficiently explained by these factors. BIX was highest in the northern part of the subtropical province, where photodegradation of DOM was the most intense. This suggested that the interaction between photodegradation and biodegradation of DOM occurs in the subtropical province.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3