Towards a Reliable Spam Detection: An Ensemble classification with rejection option

Author:

Olivo Cleber1,Santin Altair1,Viegas Eduardo1,Jeremias Jhonatan1,Viegas Eduardo2,Souto Eduardo3

Affiliation:

1. Pontifícia Universidade Católica do Parana (PUCPR)

2. Technology Innovation Institute (TII)

3. Federal University of Amazonas

Abstract

Abstract Many issues are faced in the email environment due to Spam, such as bottlenecks in the email gateways despite substantial investments in servers' infrastructure, wasted computational resources, and ineffective detection despite the demand for frequent spam model updates. This paper proposes a reliable detection model to deal with the non-stationary behavior of spam messages over time. A high detection rate is provided in a shallow classifier wherein only reliable spam message classification is accepted. Unreliable classifications are rejected and forwarded to a deep learning classifier, providing reliability and a high detection throughput. Experiments performed on a new dataset with 1,898,843 real and valid spam messages stored for over ten years show that they (i) can improve its reliability over time, (ii) detect outdated models without human assistance, and (iii) provide a high classification throughput rate.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3