Machine Learning Fake News Classification with Optimal Feature Selection

Author:

Fayaz Muhammad1,Khan Atif2ORCID,Bilal Muhammad2,Khan Sanaullah3

Affiliation:

1. University of Peshawar

2. Islamia College Peshawar

3. Kohat University of Science and Technology

Abstract

Abstract Nowadays, information is published in newspapers and social media while transmitted on radio and television about current events and specific fields of interest nationwide and abroad. It becomes difficult to explicit what is real and what is fake due to the explosive growth of online content. As a result, fake news has become epidemic and immensely challenging to analyze fake news to be verified by the producers in the form of data process outlets not to mislead the people. Indeed, it is a big challenge to the government and public to debate the situation depending on case to case. For the purpose several websites were developed for this purpose to classify the news as either real or fake depending on the website logic and algorithm. A mechanism has to be taken on fact-checking rumors and statements, particularly those that get thousands of views and likes before being debunked and refuted by expert sources. Various machine learning techniques have been used to detect and correctly classified of fake news. However, these approaches are restricted in terms of accuracy. This study has applied a Random Forest (RF) classifier to predict fake or real news. For this prpose, twenty-three (23) textual features are extracted from ISOT Fake News Dataset. Four best feature selection techniques like Chi2, Univariate, information gain and Feature importance are used for selecting fourteen best features out of twenty-three. The proposed model and other benchmark techniques are evaluated on the dataset by using best features. Experimental findings show that, the proposed model outperformed state-of-the-art machine learning techniques such as GBM, XGBoost and Ada Boost Regression Model in terms of classification accuracy.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3