Affiliation:
1. Bingöl Üniversitesi: Bingol Universitesi
Abstract
Abstract
Climate change causes trends in hydro-meteorological series. Traditional trend analysis methods such as Mann-Kendall and Spearman Rho are sensitive to correlated series and cannot detect non-parametric trends. Şen-innovative trend analysis method is launched to literature in order to overcome these restrictions. It does not require any restrictive assumptions as serial dependence and normal distribution and examines a main series as equally divided two sub-series. Şen multiple innovative trend analyses methodology is improved to detect partial trends on different sub-series but again equal lengths. Climate change nowadays more effects hydro-meteorological parameters according to last two or three decades and gives asymmetric trend change point on main time series. Due to asymmetric trend change points, it may be necessary to analyze sub-series with different lengths to use all measured data. In this study, Şen innovative trend analyses method is revised for these requirements (ITA_DL). The new approach compared with traditional Mann Kendall (MK) and Şen innovative trend analysis (Şen_ITA) gives successful and consistent results. ITA_DL gives four monotonic trends on Oxford May, July, September and October rainfall series although MK gives three monotonic trends on May, July and December and cannot detect trends on September and October. In the ITA_DL visual inspection, the December rainfall series does not show a trend that is monotonic or non-monotonic. Şen_ITA trend results are consistent with ITA_DL except September, although there are different trend slopes.
Publisher
Research Square Platform LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献