A visible-light photoinduced controlled radical polymerization using recyclable MIL-100(Fe) metal-organic frameworks

Author:

Nguyen Tuyen Bich Thi,Nguyen Tam Huu,Nguyen Thao Phuong Le,Nguyen Cam Hong Thi,Nguyen Viet Quoc,Nguyen Le-Thu T.,Cu Thanh Son,Hoang Mai Ha,Nguyen Ha Tran,Nguyen Thiet Quoc1

Affiliation:

1. Institute of applied materials science, Vietnam academy of science and technology

Abstract

Abstract Controlled polymer techniques have significantly advanced thanks to using the energy of light to control radical polymerizations. Although many photocatalysts (e.g. metal catalysts, organocatalysts, semiconductor materials, etc.) have been reported, most of these catalysts are still expensive synthetic, trace oxygen-sensitive, and often use UV source light to create the activator to the polymerization. Metal-organic frameworks (MOFs), consisting of metal clusters coordinated to organic ligands, are rising stars as heterogeneous photocatalysis for living radical polymerization techniques because they have many advantages such as facile operation, low-toxic, air stability, and sustainability. Herein, we reported a robust and versatile Fe(III)-MOF, MIL-100(Fe), as a heterogeneous photocatalyst for controlled atom transfer radical polymerization (ATRP) under visible light and natural sunlight without any additives. Moreover, controlled polymerization was also achieved in the presence of oxygen. Many polymer compositions including homopolymers, random copolymers, and diblock copolymers were successfully prepared with well-defined molecular weights and narrow dispersity index values (Đ < 1.5). Most importantly, the heterogeneous Fe(III)-MOF catalyst was allowed easily separated and can be reused again for ATRP reaction for ten cycles that remains the high photocatalytic efficiency. This method provides a new avenue for exploring MIL-100(Fe) as a low-cost, high-performance, and sustainable catalyst for photo-ATRP.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3