BiliBin: An Intelligent Mobile Phone-based Platform to Monitor Newborn Jaundice

Author:

Zarehpour Eisa1,Mohammadi Mohammad Reza1,Zakeri-Nasrabadi Morteza1,Aein Sara1,Sangsari Razieh2,Taheri Lila3,Zabihallahpour Ali1,Rohi Iraj1

Affiliation:

1. Iran University of Science and Technology

2. Tehran University of Medical Sciences

3. Qom University of Medical Science and Health Services

Abstract

Abstract Using mobile phones for medical applications are proliferating due to high-quality embedded sensors. Jaundice, a yellow discoloration of the skin caused by excess bilirubin, is a prevalent physiological problem in newborns. While moderate amounts of bilirubin are safe in healthy newborns, extreme levels are fatal and cause devastating and irreversible brain damage. Accurate tests to measure jaundice require a blood draw or dedicated clinical devices facing difficulty where clinical technology is unavailable. This paper presents a smartphone-based screening tool to detect neonatal hyperbilirubinemia caused by the high bilirubin production rate. A machine learning regression model is trained on a pretty large dataset of images, including 446 samples, taken from newborns' sternum skin in four medical centers in Iran. The learned model is then used to estimate the level of bilirubin. Experimental results show a mean absolute error of 1.807 and a correlation of 0.701 between predicted bilirubin by the proposed method and the TSB values as ground truth.

Publisher

Research Square Platform LLC

Reference43 articles.

1. (UK) NCC for W and CH (2010) Neonatal jaundice. In: RCOG Press. https://www.ncbi.nlm.nih.gov/books/NBK65113/. Accessed 15 Oct 2020

2. An introduction to kernel and nearest-neighbor nonparametric regression;Altman NS;Am Stat,1992

3. Bilirubin estimates from smartphone images of newborn infants’ skin correlated highly to serum bilirubin levels;Aune A;Acta Paediatr,2020

4. Neonatal jaundice detection system;Aydın M;J Med Syst,2016

5. Bilirubin-induced neurologic dysfunction (BIND);Bhutani VK;Semin Fetal Neonatal Med,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3