Synthesis and Biological Evaluation of Enantiomerically Pure (R)- and (S)-[18F]OF-NB1 for Imaging the GluN2B Subunit-Containing NMDA receptors

Author:

Korff Marvin1,Chaudhary Ahmad1,Li Yinlong1,Zhou Xin1,Zhao Chunyu1,Rong Jian1,Chen Jiahui1,Xiao Zhiwei1,Elghazawy Nehal H.2,Sippl Wolfgang2,Davenport April T.3,Daunais James B.3,Wang Lu4,Abate Carmen5,Ahmed Hazem6,Crowe Ron1,Liang Steven H.1,Ametamey Simon M.6,Wünsch Bernhard7,Haider Ahmed8ORCID

Affiliation:

1. Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA.

2. Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany.

3. Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.

4. Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.

5. Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy.

6. Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.

7. Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.

8. Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA

Abstract

Abstract GluN2B subunit-containing N-methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. As part of our PET ligand development program, we have recently reported on the preclinical evaluation of [18F]OF-NB1 – a GluN2B PET ligand with promising attributes for potential clinical translation. However, the further development of [18F]OF-NB1 is currently precluded by major limitations in the radiolabeling procedure. These limitations include the use of highly corrosive reactants and racemization during the radiosynthesis. As such, the aim of this study was to develop a synthetic approach that allows an enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1, as well as to assess their in vitro and in vivo performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents. A two-step radiosynthesis involving radiofluorination of the boronic acid pinacol ester, followed by coupling to the 3-benzazepine core structure via reductive amination was employed. The new synthetic approach yielded enantiomerically pure (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1, while concurrently circumventing the use of corrosive reactants. In vitro autoradiograms with mouse and rat brain sections revealed a higher selectivity of (R)-[18F]OF-NB1 over (S)-[18F]OF-NB1 for GluN2B-rich brain regions. In concert with these observations, blockade studies with commercially available GluN2B antagonist, CP101606, showed a significant signal reduction, which was more pronounced for (R)-[18F]OF-NB1 than for (S)-[18F]OF-NB1. Conversely, blockade experiments with sigma2 ligand, FA10, did not result in a significant reduction of tracer binding for both enantiomers. PET imaging experiments with CD1 mice revealed a higher brain uptake and retention for (R)-[18F]OF-NB1, as assessed by visual inspection and volumes of distribution from Logan graphical analyses. In vivo blocking experiments with sigma2 ligand, FA10, did not result in a significant reduction of the brain signal for both enantiomers, thus corroborating the selectivity over sigma2 receptors. In conclusion, we have developed a novel synthetic approach that is suitable for upscale to human use and allows the enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1. While both enantiomers were selective over sigma2 receptors in vitro and in vivo, (R)-[18F]OF-NB1 showed superior GluN2B subunit specificity by in vitro autoradiography and higher volumes of distribution in small animal PET studies.

Funder

National Institutes of Health

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3