Signal Propagation in Resettable Mechanical Logic

Author:

Panas Robert1,Sun Frederick2,Farzaneh Amin3,Cortes John4,Bekker Logan4,Johnson Hilary4ORCID,Mancini Julie5,Pascall Andrew5,Hopkins Jonathan2ORCID

Affiliation:

1. Bright Silicon Technologies LLC

2. University of California, Los Angeles

3. UCLA

4. Lawrence Livermore National Laboratory

5. Lawrence Livermore National Laboatory

Abstract

Abstract Unconventional computing, such as mechanical1 and microfluidic logic circuits2, quantum gates3, and mechanical metamaterials4 create opportunities for embedded computation, which overcome the power5, package size, and environmental limitations of conventional electronics. Emerging micro-manufacturing capabilities6 with environmentally robust materials enable mechanical logic circuits miniaturization. Kinematically, bistable logic propagates binary signals through cascading gate displacement transitions. Energetically, the inter- and intra- node compliances are tuned for re-programmable signal propagation. Applications need computational architectures which integrate resettable signal propagation7–10, logical operation11–16, and signal storage17–19. While many researchers explore aspects of these elements1, 20–23, none consider energetic limits and propagation dynamics to evaluate and advance the field. Here, we show a generalized model and metrics, validated by experimental results, that enables the design of scale-independent, resettable, mechanical logic circuits. By studying propagation energy flows, we identified non-dimensional operating regimes in which signals propagate and resettable logic is possible. We provide deterministic design methods to evaluate future divergent topologies for displacement-based mechanical logic structures. Our results demonstrate the framework for designing densely integrated mechanical computation systems which harvest available ambient energy to propagate computational cascades. This logic responds to multi-dimensional environmental inputs and thus enables re-programmable, powerless, and embedded computation.

Publisher

Research Square Platform LLC

Reference36 articles.

1. Mechanical computing;Yasuda H;Nature,2021

2. Microfluidic logic gates and timers;Toepke MW;Lab. Chip,2007

3. Demonstration of a Fundamental Quantum Logic Gate;Monroe C;Phys. Rev. Lett.,1995

4. Mechanical metamaterials: a state of the art;Barchiesi E;Math. Mech. Solids,2019

5. Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions;Garimella SV;IEEE Trans. Compon. Packag. Manuf. Technol.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3