Quantitative CT-analysis of over aerated lung tissue and correlation with fibrosis extent in patients with idiopathic pulmonary fibrosis

Author:

Tonelli Roberto1,Smit Marry R.2,Castaniere Ivana1,Casa Giovanni Della1,Andrisani Dario1,Gozzi Filippo1,Bruzzi Giulia1,Cerri Stefania1,Samarelli Anna Valeria1,Raineri Giulia3,Spagnolo Paolo4,Ball Lorenzo5,Rizzoni Raffella6,Paulus Frederique2,Bos Lieuwe D.J.2,Clini Enrico1,Marchioni Alessandro1

Affiliation:

1. University Hospital of Modena, University of Modena Reggio Emilia

2. Amsterdam University Medical Centers, location University of Amsterdam

3. University of Modena Reggio Emilia

4. University Hospital of Padova, University of Padova

5. University of Genoa

6. University of Ferrara

Abstract

Abstract

INTRODUCTION The usual interstitial pneumonia (UIP) pattern, hallmark of idiopathic pulmonary fibrosis (IPF), may induce harmful local overdistension during mechanical ventilation given the juxtaposition of different tissue elasticities. Mechanotransduction, linking mechanical stress and strain to molecular pro-fibrotic pathways, likely contributes to fibrosis progression. Understanding the mechanical forces and aeration patterns in the lungs of IPF patients is crucial for unraveling potential mechanisms of disease progression. Quantitative lung computed tomography (CT) can accurately assess the air content of lung regions, thus informing on zonal distension. This study aims to investigate radiological evidence of lung over aeration in spontaneously breathing UIP patients compared to healthy controls during maximal inspiration. METHODS Patients with IPF diagnosis referred to the Center for Rare Lung Diseases of the University Hospital of Modena (Italy) in the period 2020–2023 who underwent High Resolution Computed Tomography (HRCT) scans at residual volume (RV) and total lung capacity (TLC) using standardized protocols were retrospectively considered eligible. Patients with no signs of lung disease at HRCT performed with the same image acquisition protocol nor at pulmonary function test (PFTs) served as controls. Lung segmentation and quantitative analysis were performed using 3D Slicer software. Lung volumes were measured, and specific density thresholds defined over aerated and fibrotic regions. Comparison between over aerated lung at RV and TLC in the two groups and according to lung lobes was sought. Further, the correlation between aerated lung and the extent of fibrosis was assessed and compared at RV and TLC. RESULTS IPF patients (N = 20) exhibited higher over aerated lung proportions than controls (N = 15) both at RV and TLC (4.5% vs. 0.7%, p < 0.0001 and 13.8% vs. 7%, p < 0.0001 respectively). Over aeration increased significantly from RV to TLC in both groups, with no intergroup difference (p = 0.67). Sensitivity analysis revealed significant variations in over aerated lung areas among lobes when passing from RV to TLC with no difference within lobes (p = 0.28). Correlation between over aeration and fibrosis extent was moderate at RV (r = 0.62, p < 0.0001) and weak at TLC (r = 0.27, p = 0.01), being the two significantly different at interpolation analysis (p < 0.0001). CONCLUSIONS This study provides the first evidence of radiological signs of lung over aeration in patients with UIP-pattern patients when passing from RV to TLC. These findings offer new insights into the complex interplay between mechanical forces, lung structure, and fibrosis and warrant larger and longitudinal investigations.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3