Assessing rainfall triggering of shallow landslides with an automatic tool generating rainfall thresholds: a case study in the Alpes Maritimes region, France

Author:

Barthélemy Sophie1,Bernardie Séverine2ORCID,Grandjean Gilles2

Affiliation:

1. Météo France: Meteo France

2. BRGM National Geological Survey: Bureau de Recherches Geologiques et Minieres

Abstract

Abstract In this work, we use a statistical approach for modeling shallow landslide rainfall thresholds (Caine 1980) with a case study for the Alpes-Maritimes region (France). Cumulated rainfall / duration (ED) thresholds are obtained with the CTRL-T algorithm (Melillo and al. 2018) for different non-exceedance probabilities from a landslide and two climate datasets. This tool allows to automatically define rainfall events that might trigger landslides, ensuring robustness and objectivity in this process. The first climate dataset stores high resolution gridded rainfall data (1km resolution, hourly), which provides rainfall data with high temporal and spatial accuracy. This dataset, coming from radar data, is calibrated with rainfall gauges, ensuring a higher accuracy of the rainfall measurements. It provides the rainfall records directly used in the threshold construction The second dataset contains lower resolution gridded rainfall, snow, temperature, and evapotranspiration data (8km resolution, daily); it enables to assess the region’s climate through parameters imported in CTRL-T. The thresholds are then validated using a method designed by Gariano and al. (2015). Several improvements are made to the initial method. First, evapotranspiration values approximated in the process are replaced by values from the second climate dataset, the result accounting best for the regional climate. Then, computing duration values used for isolating events and sub-events for each mesh point allows to consider the heterogeneity of the Alpes-Maritimes climate. Rainfall thresholds are eventually obtained, successively from a set of probable conditions (MRC) and a set of highly probable conditions (MPRC). The validation process strengthens the analysis as well as enables to identify best performing thresholds. This work represents novel scientific progress towards landslide reliable warning systems by (a) making a case study of empirical rainfall thresholds for Alpes-Maritimes, (b) using high-resolution rainfall data and (c) adapting the method to climatically heterogeneous zones.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3