Affiliation:
1. Versiti Blood Center of Wisconsin
Abstract
Abstract
Objective
As cohesin mutations are rarely found in MLL-rearranged acute myeloid leukemias, we investigated the potential synthetic lethality between cohesin mutations and MLL-AF9 using murine hematopoietic stem and progenitor cells.
Results
Contrary to our hypothesis, a complete loss of Stag2 or haploinsufficiency of Smc3 were well tolerated in MLL-AF9-expressing hematopoietic stem and progenitor cells. Minimal effect of cohesin subunit loss on the in vitro self-renewal of MLL-AF9-expressing cells was observed. Despite the differing mutational landscapes of cohesin-mutated and MLL fusion AMLs, previous studies showed that cohesin and MLL fusion mutations similarly drive abnormal self-renewal through HOXA gene upregulation. The utilization of a similar mechanism suggests that little selective pressure exists for the acquisition of cohesin mutations in AMLs expressing MLL fusions, explaining their lack of co-occurrence. Our results emphasize the importance of using genetic models to test suspected synthetic lethality and suggest that a lack of co-occurrence may instead point to a common mechanism of action between two mutations.
Publisher
Research Square Platform LLC