Removal of Heavy metal ions using Nano-cellulose prepared from rice husk: Validation by Differential Pulse Voltammetry

Author:

Baraskar P. N.1,Samant R. A.1,Gurav V. L.2

Affiliation:

1. K.C. College, Mumbai, Maharashtra,, India

2. Dapoli Urban Bank Senior Science College Dapoli, Ratnagiri,Maharashtra, India

Abstract

Abstract In this work Cellulose was extracted from rice husk and chemically modified to produce Nano-Cellulose. It was characterized by FTIR, XRD, SEM/EDS, TEM, BET surface area analyzer, Particle size analyzer and tested for the removal of metal ions i.e. Zn(II), Cd(II), As(III),Pb(II) and Sn(II) from aqueous solution. The removal method was validated by differential pulse voltammetry (DPV). Adsorption experiment was performed to investigate effects of initial pH, adsorbent dose, contact time and initial concentration of heavy metal ions on the adsorption capacity of nanocellulose. The experimental results revealed that the removal of metal ions on the nanocellulose was a pH-dependent process with the maximum adsorption capacity at the initial solution pH of 5–6. Adsorbent dose of 8mg/mL was sufficient for effective adsorption. In addition, the kinetics and equilibrium data are well described by pseudo-second-order kinetics and the Freundlich adsorption isotherm model at 50 min contact time and 50 mg/L initial concentration. Moreover, the desorption and re-adsorption performance was also studied, and the results revealed that the Nano-cellulose still showed good adsorption performance up to eight cycles of regeneration.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3