Affiliation:
1. Shandong University of Science and Technology
2. Beijing Institute of Radio Measurement
3. University of Warsaw
Abstract
Abstract
A scheme for measuring microwave (MW) electric (E) fields is proposed based on bichromatic electromagnetically induced transparency (EIT) in Rydberg atoms. A bichromatic control field drives the excited state transition, whose absorption shows three EIT windows. When a MW field drives the Rydberg transition, the EIT windows split and six transmission peaks appear. It is interesting to find that the peak-to-peak distance of transmission spectrum is sensitive to the MW field strength, which can be used to measure MW E-field. Simulation results show that the measurement accuracy could be increased by about 4 times, and the minimum detectable strength of the MW E-field may be improved by about 3 times compared with the common EIT scheme. After the Doppler averaging, the minimum detectable MW E-field strength is about 5 times larger than that without Doppler effect. Also, we investigate other effects on the sensitivity of the system.
Publisher
Research Square Platform LLC