Fire and ant interactions mediated by honeydew and extrafloral nectar in an Australian tropical savanna

Author:

Oliveira Fernanda M.P.1ORCID,Silva Carlos H. F.1,Moir Melinda L.2,Leal Inara R.1,Andersen Alan N.3ORCID

Affiliation:

1. Universidade Federal de Pernambuco

2. Western Australia Department of Primary Industries and Regional Development

3. Charles Darwin University School for Environmental Research: Charles Darwin University Research Institute for the Environment and Livelihoods

Abstract

Abstract

Fire is a major disturbance affecting ecosystems globally, but its impact on mutualisms has received minimal attention. Here, we use a long-term field experiment to investigate the impact of different fire regimes on globally important ant-honeydew and ant-extrafloral nectar (EFN) mutualistic interactions in an Australian tropical savanna. These interactions provide ants with a key energy source, while their plant and hemipteran hosts receive protection services. We examined ant interactions on species of Eucalyptus (lacking EFNs) and Acacia (with EFNs) in three replicate plots each of burning every two and three years early in the dry season, burning late in the dry season every two years, and unburnt for > 25 years. The proportions of plants with ant-honeydew interactions in Acacia (44.6%) and Eucalyptus (36.3%) were double those of Acacia plants with ant-EFN interactions (18.9%). The most common ants, representing 85% of all interactions, were behaviourally dominant species of Oecophylla, Iridomyrmex and Papyrius. Fire promoted the incidence of ant interactions, especially those involving EFNs on Acacia, which occurred on only 3% of plants in unburnt plots compared with 24% in frequently burnt plots. Fire also promoted the relative incidence of behaviourally dominant ants, which are considered the highest-quality mutualists. Contrary to expectations, frequent fire did not result in a switching of behaviourally dominant ant partners from forest-adapted Oecophylla to arid-adapted Iridomyrmex. Our findings that frequent fire increases ant interactions mediated by honeydew and extrafloral nectar, and promotes the quality of ant mutualists, have important implications for protective services provided by ants in highly fire-prone ecosystems.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3