Investigating Flow-Induced Changes in Coaxial Cylindrical Dielectric Barrier Discharge Using Equivalent Circuit Modelling and Chemical Workbench Simulations

Author:

Pathak Ram Mohan1,Jayanarasimhan Ananthanarasimhan1,Nandi Sounak1,Rao Lakshminarayana1

Affiliation:

1. Indian Institute of Science

Abstract

Abstract

This study presents the development of an equivalent electrical circuit model using MATLAB/Simulink to simulate the discharge behaviour of a coaxial cylindrical dielectric barrier discharge (DBD) and explores the influence of the flow regime on its electrical characteristics. Validation of the experimental findings was performed using Chemical Workbench (CWB). The simulations provided valuable insights into the DBD behaviour, facilitating its performance optimization. The equivalent circuit model demonstrated accurate predictions of peak current amplitude\({ (I}_{peak})\), root mean square of total current \(\left({ I}_{rms }\right)\), and microfilament discharge resistance \(\left({ R}_{f }\right)\). The study unveiled a significant impact of the flow regime on the electrical properties of the DBD. As the flow rate (Q) transitioned from the laminar flow regime (Reynolds number, Re = 300) to the turbulent flow regime (Re = 4500), the peak current \({ (I}_{peak})\) exhibited an increase from 60 mA to 80 mA for Argon (Ar) and 90 mA to 140 mA for Nitrogen (N2) gas. Simultaneously, the \({ R}_{f }\) decreased from 3.0 mΩ to 0.6 mΩ for Ar and 2.0 mΩ to 0.1 mΩ for N2. The impact of the flow regime on \({ R}_{f }\) was analyzed using the Peclet number (Pe) to gain a better understanding of heat/mass transport from the discharge to the surroundings. The MATLAB/Simulink and CWB models corroborated these findings, demonstrating excellent agreement with the experimental results. This validation underscores the reliability of the models in effectively characterizing the discharge parameters of the DBD.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3