Increased AID Results in Mutations at the CRLF2 Locus Implicated in Latin American ALL Health Disparities

Author:

Pannunzio Nicholas1ORCID,Rangel Valeria1,Sterrenberg Jason1,Garawi Aya1,Mezcord Vyanka2,Folkerts Melissa1,Caulderon Sabrina1,Wang Jinglong3,Soyfer Eli1,Eng Oliver1,Valerin Jennifer1,Tanjasiri Sora1,Quintero-Rivera Fabiola1,Masri Selma4,Seldin Marcus4ORCID,Frock Richard3ORCID,Fleischman Angela4ORCID

Affiliation:

1. UC Irvine

2. California State University Fullerton

3. Stanford University

4. University of California, Irvine

Abstract

Abstract Activation-induced cytidine deaminase (AID) is a B cell-specific base editor required during class switch recombination and somatic hypermutation for B cell maturation and antibody diversification. However, it has also been implicated as a factor in the etiology of several B cell malignancies. Evaluating the AID-induced mutation load in patients at-risk for certain types of blood cancers is critical in assessing disease severity and treatment options. Here, we have developed a digital PCR (dPCR) assay that allows us to track the mutational landscape resulting from AID modification or DNA double-strand break (DSB) formation and repair at sites known to be prone to DSBs. Implementation of this new assay showed that increased AID levels in immature B cells increases genome instability at loci linked to translocation formation. This included the CRLF2 locus that is often involved in chromosomal translocations associated with a subtype of acute lymphoblastic leukemia (ALL) that disproportionately affects Latin Americans (LAs). To support this LA-specific identification of AID mutation signatures, we characterized DNA from immature B cells isolated from the bone marrow of ALL patients. Our ability to detect and quantify these mutation signatures will potentiate future risk identification, early detection of cancers, and reduction of associated cancer health disparities.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3