Incidence Rate of Occult Lymph Node Metastasis in Clinical T 1-2 N 0 M 0 Small Cell Lung Cancer Patients and Radiomic Prediction Based on Contrast-enhanced CT Imaging: A Multicentre Study

Author:

Jiang Xu1,Luo Chao2,Peng Xin3,Zhang Jing4,Yang Lin1,Liu Li-Zhi2,Cui Yan-Fen4,Liu Meng-Wen1,Miao Lei1,Jiang Jiu-Ming1,Ren Jia-Liang5,Yang Xiao-Tang4,Li Meng1,Zhang Li1

Affiliation:

1. National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College

2. Sun Yat-sen University Cancer Center

3. The Third People's Hospital of Chengdu

4. Shanxi Cancer Hospital, Shanxi Medical University

5. GE HealthCare

Abstract

Abstract Background This study aimed to explore the incidence of occult lymph node metastasis (OLM) in clinical T1 − 2N0M0 (cT1 − 2N0M0) small cell lung cancer (SCLC) patients and develop machine learning prediction models using preoperative intratumoral and peritumoral contrast-enhanced CT-based radiomic data. Methods By conducting a retrospective analysis involving 242 eligible patients from 4 centres, we determined the incidence of OLM in cT1 − 2N0M0 SCLC patients. For each lesion, two ROIs were defined using the gross tumour volume (GTV) and peritumoral volume 15 mm around the tumour (PTV). By extracting a comprehensive set of 1595 enhanced CT-based radiomic features individually from the GTV and PTV, we rigorously evaluated the model performance using various metrics, including the area under the curve (AUC), accuracy, sensitivity, specificity, calibration curve, and decision curve analysis (DCA). For enhanced clinical applicability, we formulated a nomogram that integrates clinical parameters and the rad_score (GTV and PTV). Results The initial investigation revealed a 33.9% OLM positivity rate in cT1 − 2N0M0 SCLC patients. Our combined model, which incorporates three radiomic features from the GTV and PTV, along with two clinical parameters (smoking status and shape), exhibited robust predictive capabilities. With a peak AUC value of 0.772 in the external validation cohort, the model outperformed the alternative models. The nomogram significantly enhanced diagnostic precision for radiologists and added substantial value to the clinical decision-making process for T1 − 2N0M0 SCLC patients. Conclusions The incidence of OLM in SCLC patients surpassed that in non-small cell lung cancer patients. The combined model demonstrated a notable generalization effect, effectively distinguishing between positive and negative OLMs in a noninvasive manner, thereby guiding individualized clinical decisions for patients with cT1 − 2N0M0 SCLC.

Publisher

Research Square Platform LLC

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3