MIRAD: A Method for Interpretable Ransomware Attack Detection

Author:

Marcinkowski Bartosz1,Goschorska Maja2,Wileńska Natalia2,Siuta Jakub1,Kajdanowicz Tomasz2

Affiliation:

1. MIM Solutions

2. Sagenso

Abstract

Abstract In the face of escalating crypto-ransomware attacks, which encrypt user data for ransom, our study introduces a significant advancement in dynamic ransomware detection. We develop an innovative machine learning model capable of identifying ransomware activity. This model is uniquely trained in a simulated user environment, enhancing detection accuracy under realistic conditions and addressing the imbalances typical of ransomware datasets. A notable aspect of our approach is the emphasis on interpretability. We employ a simplified version of Generalized Additive Models (GAMs), ensuring clarity in how individual features influence predictions. This is crucial for minimizing false positives, a common challenge in dynamic detection methods. Our contributions to the field include a Python library for easy application of our detection method, and a comprehensive, publicly available ransomware detection dataset. These resources aim to facilitate broader research and implementation in ransomware defense.

Publisher

Research Square Platform LLC

Reference39 articles.

1. Claudio Ardagna and Stephen Corbiaux and Koen Van Impe and Radim Ostadal. ENISA THREAT LANDSCAPE 2023. 2023, https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023, 10, The European Union Agency for Cybersecurity (ENISA), 9789292046453, 10.2824/782573

2. Juan A. Herrera-Silva and Myriam Hern ández- Álvarez (2023) Dynamic Feature Dataset for Ransomware Detection Using Machine Learning Algorithms. Sensors 23 https://doi.org/10.3390/s23031053, MDPI, 36772092, 2, 3, 14248220

3. Salwa Razaulla and Claude Fachkha and Christine Markarian and Amjad Gawanmeh and Wathiq Mansoor and Benjamin C.M. Fung and Chadi Assi (2023) The Age of Ransomware: A Survey on the Evolution, Taxonomy, and Research Directions. IEEE Access https://doi.org/10.1109/ACCESS.2023.3268535, Institute of Electrical and Electronics Engineers Inc., 21693536

4. Jos é Antonio G ómez Hern ández and Pedro Garc ía Teodoro and Roberto Mag án Carri ón and Rafael Rodr íguez G ómez. Crypto-Ransomware: A Revision of the State of the Art, Advances and Challenges. 2023, 12, Multidisciplinary Digital Publishing Institute (MDPI), 11, Electronics (Switzerland), 21, 20799292, 10.3390/electronics12214494

5. Zhibo Zhang and Hussam Al Hamadi and Ernesto Damiani and Chan Yeob Yeun and Fatma Taher (2022) Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research. IEEE Access 10: 93104-93139 https://doi.org/10.1109/ACCESS.2022.3204051, Institute of Electrical and Electronics Engineers Inc., 21693536

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3