Graph Fourier transform for spatial omics representation and analyses of complex organs

Author:

Chang Yuzhou1,Liu Jixin2,Jiang Yi3,Ma Anjun3ORCID,Yeo Yao Yu4ORCID,Guo Qi3,McNutt Megan1,Krull Jodran1,Rodig Scott J.5,Barouch Dan H.4ORCID,Nolan Garry6ORCID,Xu Dong7ORCID,Jiang Sizun4ORCID,Li Zihai8ORCID,Liu Bingqiang9ORCID,Ma Qin1ORCID

Affiliation:

1. The Ohio State University

2. Shandong University

3. Ohio State University

4. Beth Israel Deaconess Medical Center

5. Harvard Medical School

6. Stanford School of Medicine

7. University of Missouri - Columbia

8. The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute

9. Shanong University

Abstract

Abstract

Spatial omics technologies are capable of deciphering detailed components of complex organs or tissue in cellular and subcellular resolution. A robust, interpretable, and unbiased representation method for spatial omics is necessary to illuminate novel investigations into biological functions, whereas a mathematical theory deficiency still exists. We present SpaGFT (Spatial Graph Fourier Transform), which provides a unique analytical feature representation of spatial omics data and elucidates molecular signatures linked to critical biological processes within tissues and cells. It outperformed existing tools in spatially variable gene prediction and gene expression imputation across human/mouse Visium data. Integrating SpaGFT representation into existing machine learning frameworks can enhance up to 40% accuracy of spatial domain identification, cell type annotation, cell-to-spot alignment, and subcellular hallmark inference. SpaGFT identified immunological regions for B cell maturation in human lymph node Visium data, characterized secondary follicle variations from in-house human tonsil CODEX data, and detected extremely rare subcellular organelles such as Cajal body and Set1/COMPASS. This new method lays the groundwork for a new theoretical model in explainable AI, advancing our understanding of tissue organization and function.

Publisher

Springer Science and Business Media LLC

Reference66 articles.

1. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response;Liu S;Immunity

2. Methods and applications for single-cell and spatial multi-omics;Vandereyken K;Nat Rev Genet,2023

3. Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP);Jain S;Nat Cell Biol,2023

4. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network;Hu J;Nat Methods,2021

5. Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front;Schürch CM;Cell,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3