Efficacy of oltipraz in preventing acetaminophen-induced liver injury in mice

Author:

Masubuchi Yasuhiro1,Mikami Kenji1

Affiliation:

1. Chiba Institute of Science

Abstract

Abstract Oltipraz (OPZ) is a synthetic dithiolethione with potential as a cancer chemopreventive agent, which can work by inducing detoxification enzymes. OPZ is an activator of nuclear factor erythroid 2-related factor 2 (Nrf2), suggesting its involvement in enzyme induction and possible protection against drug-induced liver injury. In this study, we present OPZ-induced protection of mice against acetaminophen (APAP)-induced liver injury and discuss its possible contributing factors. Overnight-fasted male CD-1 mice were administered APAP intraperitoneally, and some mice were administered OPZ 16 h before APAP. Hepatotoxicity was assessed by measuring serum alanine aminotransferase leakage and histopathological evaluation. The hepatic mRNA expressions of CYP2E1, glutamate cysteine ligase (GCL), and NAD(P)H:quinone oxidoreductase (NQO1) were measured by real-time reverse-transcription polymerase chain reaction. OPZ protected mice from APAP-induced liver injury in a dose-dependent manner, but did not alter hepatic glutathione (GSH) content or GCL expression in control mice, indicating that its hepatoprotective effect is not due to changes in basal GSH levels. OPZ did not affect CYP2E1 expression or APAP-induced early GSH depletion, suggesting it does not inhibit the metabolic activation of APAP to produce N-acetyl-p-benzoquinone imine. In contrast, after GSH depletion, OPZ accelerated hepatic GSH recovery. APAP significantly increased GCL expression during liver injury, but OPZ treatment only led to additional NQO1 expression. This suggests that NQO1 is responsible for the enhanced GSH recovery and protection against APAP-induced liver injury seen in OPZ-treated mice. In summary, OPZ protects against APAP-induced liver injury by inducing NQO1 expression and resulting in improved GSH recovery.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3