The comparison between multiple linear regression and machine learning methods in predicting cognitive function in Chinese type 2 diabetes

Author:

Liu Chi-Hao1,Peng Chung-Hsin2,Huang Li-Ying2,Chen Fang-Yu2,Kuo Chun-Heng2,Wu Chung-Ze3,Cheng Yu-Fang3

Affiliation:

1. Kaohsiung Armed Forces General Hospital

2. Fu Jen Catholic University

3. Taipei Medical University

Abstract

Abstract The prevalence of type 2 diabetes (T2D) has been increasing drastically in recent decades. In the same time, it has been noted that dementia is related to T2D. In the past, traditional multiple linear regression (MLR) is the most commonly used method in analyzing these kinds of relationships. However, machine learning methods (Mach-L) have been emerged recently. These methods could capture non-linear relationships better than the MLR. In the present study, we enrolled old T2D and used four different Mach-L methods to analyze the relationships between risk factors and cognitive function. Our goals were first, to compare the accuracy between MLR and Mach-L in predicting cognitive function and second, to rank importance of the risks for impaired cognitive function in T2D. There were 197 old T2D enrolled (98 men and 99 women). Demographic and biochemistry data were used as independent variables and the cognitive function assessment (CFA) score was measured by Montreal Cognitive Assessment which was regarded as independent variable. In addition to traditional MLR, random forest (RF), stochastic gradient boosting (SGB), Naïve Byer’s classifier (NB) and eXtreme gradient boosting (XGBoost) were also applied. Our results showed that all the RF, SGB, NB and XGBoost outperformed than the MLR. Education level, age, frailty score, fasting plasma glucose and body mass index were identified as the important factors from the more to the less important. In conclusion, our study demonstrated that RF, SGB, NB and XGBoost are more accurate than the MLR and in predicting CFA score. By these methods, the importance ranks of the risk factors are education level, age, frailty score, fasting plasma glucose and body mass index accordingly in a Chinese T2D cohort.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3