Activated carbon with high mesopore ratio derived from waste Zanthoxylum bungeanum branches by KNO3 assisted H3PO4 staged activation for toluene adsorption

Author:

Xie Hongmei1,Liu Na1,Wang Haoyu1,Chen Shuang1,Zeng Jia1,Zhou Guilin1ORCID

Affiliation:

1. Chongqing Technology and Business University

Abstract

Abstract Waste Zanthoxylum bungeanum branches were used to prepare activated carbon adsorbents with high mesopore ratio by H3PO4 staged activation method with adding KNO3 additive. The prepared activated carbon adsorbents were characterized by SEM, BET, FT-IR, and XRD. The adsorption properties of the prepared activated carbon adsorbents were evaluated by the toluene adsorption/desorption in air. The quasi-first-order, quasi-second-order, and Bangham models were used to fit the obtained toluene adsorption results. The oxidative etching of KNO3 additive improved the pore-forming ability of the H3PO4 activator to enhance the activation pore-forming effects of the selected biomass raw material. The secondary pore-forming effects of K atoms promoted the effective expansion of the pore diameter in the activated carbon preparation process to prepare activated carbon adsorbents with high mesopore proportion. The specific surface area and mesopore proportion of the activated carbon adsorbents prepared by adding KNO3 additive exceeded 1100 m2/g and 71.0%, respectively, and the toluene adsorption capacity exceeded 370.0 mg/g. The rich mesopore structures can effectively reduce the toluene mass transfer resistance, which can promote the corresponding activated carbon adsorbent to be regenerated by low-temperature (40 °C) thermal desorption. The toluene adsorption on the prepared activated carbon adsorbents include surface adsorption and diffusion in pore strucutres, and the toluene adsorption mechanism is more consistent with the Bangham kinetic model.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3