Molecular dynamics simulations of the interaction between graphene and lubricating oil molecules

Author:

Hu Xianguo1,Qiu Feng1,Song Hui1,Feng Weimin1,Yang Zhiquan2,Zhang Fei1

Affiliation:

1. Hefei University of Technology

2. Chinese Academy of Science

Abstract

Abstract The microscopic interaction between graphene and liquid lubricating oil molecules significantly affects the rheological and tribological properties of the solid-liquid lubricating system. In this study, the interaction between graphene and six kinds of alkane oil droplets with different chain lengths was investigated by molecular dynamics simulations. Interaction energy, atomic concentration distribution, mean square distribution, curvature, centroid, and inclination angle were used to quantitatively describe the effect of interaction differences on lubricating performance. The results demonstrated that with the increase of the carbon chain length, the alkane molecules transformed from a spherical oil droplet model to an ordered layered structure. At the same time, the interaction energy and the angle with the Z coordinate axis were further increased. The self-diffusion movement and the degree of molecular bending were reduced during the interaction, indicating that long-chain alkane molecules interact strongly with graphene, and a dense bilayer adsorption film was formed by horizontal adsorption on the surface of graphene, thus exerting a good lubricating effect. In addition, it was found that the increase in temperature was beneficial to the occurrence of the adsorption process, but high temperature is not conducive to the stable adsorption of alkane molecules on the surface of graphene.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3