Freeform Generative Design of Complex Functional Structures

Author:

Pereira Gerald1,Howard David1,Lahur Paulus1,Breedon Michael1,Kilby Phil1,Hornung Christian1

Affiliation:

1. CSIRO

Abstract

AbstractGenerative machine learning is poised to revolutionise a range of domains where rational design has long been thede factoapproach: where design is practically a time consuming and frustrating process guided by heuristics and intuition. In this article we focus on the domain of flow chemistry, which is an ideal candidate for generative design approaches. We demonstrate a generative machine learning framework that optimises diverse, bespoke reactor elements for flow chemistry applications, combining evolutionary algorithms and a scalable fluid dynamics solver forin silicoperformance assessment. Experimental verification confirms the discovery of never-before-seen bespoke mixers whose performance exceeds the state of the art by 45%. These findings highlight the power of autonomous generative design to improve the operational performance of complex functional structures, with potential wide-ranging industrial applications.

Publisher

Research Square Platform LLC

Reference55 articles.

1. Going with the flow;Martin RE;Science,2016

2. Rethinking chemistry for a circular economy;Kümmerer K;Science,2020

3. Designing for a green chemistry future;Zimmerman JB;Science,2020

4. The hitchhiker’s guide to flow chemistry∥;Plutschack MB;Chem Rev,2017

5. The fundamentals behind the use of flow reactors in electrochemistry;Noël T;Acc Chem Res,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3