Improving Information Extraction from Pathology Reports using Named Entity Recognition

Author:

Zeng Ken G.1,Dutt Tarun2,Witowski Jan2,GV Kranthi Kiran1,Yeung Frank2,Kim Michelle2,Kim Jesi2,Pleasure Mitchell2,Moczulski Christopher2,Lopez L. Julian Lechuga3,Zhang Hao2,Harbi Mariam Al4,Shamout Farah E.3,Major Vincent J.2,Heacock Laura2,Moy Linda2,Schnabel Freya2,Pak Linda M.2,Shen Yiqiu1,Geras Krzysztof J.2

Affiliation:

1. New York University

2. New York University Grossman School of Medicine

3. New York University Abu Dhabi

4. Abu Dhabi Health Services

Abstract

Abstract Pathology reports are considered the gold standard in medical research due to their comprehensive and accurate diagnostic information. Natural language processing (NLP) techniques have been developed to automate information extraction from pathology reports. However, existing studies suffer from two significant limitations. First, they typically frame their tasks as report classification, which restricts the granularity of extracted information. Second, they often fail to generalize to unseen reports due to variations in language, negation, and human error. To overcome these challenges, we propose a BERT (bidirectional encoder representations from transformers) named entity recognition (NER) system to extract key diagnostic elements from pathology reports. We also introduce four data augmentation methods to improve the robustness of our model. Trained and evaluated on 1438 annotated breast pathology reports, acquired from a large medical center in the United States, our BERT model trained with data augmentation achieves an entity F1-score of 0.916 on an internal test set, surpassing the BERT baseline (0.843). We further assessed the model's generalizability using an external validation dataset from the United Arab Emirates, where our model maintained satisfactory performance (F1-score 0.860). Our findings demonstrate that our NER systems can effectively extract fine-grained information from widely diverse medical reports, offering the potential for large-scale information extraction in a wide range of medical and AI research. We publish our code at https://github.com/nyukat/pathology_extraction.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3