The interlayer twist effectively regulates interlayer excitons in InSe/Sb van der Waals heterostructure
Author:
Niu Xianghong1, Shi Anqi1, Guan Ruilin1, Niu Zifan1, Zhang Wenxia2, Zhang Xiuyun3, Wang Shiyan1, Wang Bing4ORCID, Lv Jin5
Affiliation:
1. Nanjing University of Posts & Telecommunications 2. Chongqing University of Posts and Telecommunications 3. Yangzhou University 4. Henan University 5. Shanxi Normal University
Abstract
Abstract
The interlayer twist angle endows a new degree of freedom to manipulate the spatially separated interlayer excitons in van der Waals (vdWs) heterostructures. Herein, we find that the band-edge Γ-Γ interlayer excitation directly forms interlayer exciton in InSe/Sb heterostructure, different from that of transition metal dichalcogenides (TMDs) heterostructures in two-step processes by intralayer excitation and transfer. By tuning the interlayer coupling and breathing vibrational modes associated with the Γ-Γ photoexcitation, the interlayer twist can significantly adjust the excitation peak position and lifetime of recombination. The interlayer excitation peak in InSe/Sb heterostructure can shift ~ 400 meV, and the interlayer exciton lifetime varies in hundreds of nanoseconds as a periodic function of the twist angle (0°-60°). This work enriches the understanding of interlayer exciton formation and facilitates the artificial excitonic engineering of vdWs heterostructures.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. 1. Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z., Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal. 2018, 8, 2253–2276. 2. 2. Liu, Y.; Duan, X.; Huang, Y.; Duan, X., Two-Dimensional Transistors Beyond Graphene and Tmdcs. Chem. Soc. Rev. 2018, 47, 6388–6409. 3. 3. Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; Perez De Lara, D.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A., Recent Progress in the Assembly of Nanodevices and Van Der Waals Heterostructures by Deterministic Placement of 2d Materials. Chem. Soc. Rev. 2018, 47, 53–68. 4. 4. Zhang, H.; Cheng, H. M.; Ye, P., 2d Nanomaterials: Beyond Graphene and Transition Metal Dichalcogenides. Chem. Soc. Rev. 2018, 47, 6009–6012. 5. 5. Pham, P. V.; Bodepudi, S. C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X., 2d Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem. Rev. 2022, 122, 6514–6613.
|
|