Novel alginate-based binders for silicon-graphite anodes in lithium-ion batteries: Effect of binder chemistry on the electrochemical performance

Author:

Güneren Alper1,Nada Ahmed A.2,Šišková Alena Opálková3,Mosnáčková Katarína3,Kleinová Angela3,Mosnáček Jaroslav3,Lenčéš Zoltán1

Affiliation:

1. Institute of Inorganic Chemistry, Slovak Academy of Sciences

2. Centre for Advanced Materials Application (CEMEA), Slovak Academy of Sciences

3. Polymer Institute, Slovak Academy of Sciences

Abstract

Abstract Novel alginate-based binders containing either catechol (d-Alg) or sulfonate (s-Alg) functional groups were developed and characterized to improve the capacity decay performance and better stability of Li-ion batteries. The electrochemical performance of silicon-graphite (Si/Gr) anode with alginate-based binder was compared to the commonly used CMC/SBR binder. The active material in the anodes was the ball-milled Si/Gr (20:80 wt%) powder mixture. A comprehensive electrochemical study was carried out through rate capability test, cycle test, differential capacity analysis (dQ/dV), and electrochemical impedance spectroscopy (EIS). The functionalized s-Alg binder showed the lowest electrolyte uptake (11.5%) and the highest tensile strength (97 MPa). Anodes with s-Alg exhibited high initial capacity (1250 mAh g− 1) and improved decay performance (580 mAh g− 1 at 0.2 C), by ~ 65% higher compared to CMC/SBR binder. The influence of pH value of s-Alg binder preparation showed that anodes prepared at pH 3 of s-Alg exhibit better performance, reaching 800 and 750 mAh g− 1 at 0.1 C and 0.2 C, respectively due to the stronger bonding formation and compactness of anode layer which providing low charge transfer and solid electrolyte interface resistance.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3