Design and Characterization of a Membrane Dielectric-Barrier Discharge Reactor for Ammonia Synthesis

Author:

Veng Visal1,Tabu Benard1,Simasiku Ephraim1,Landis Joshua1,Mack John Hunter1,Carreon Maria1,Trelles Juan Pablo1

Affiliation:

1. University of Massachusetts

Abstract

Abstract Ammonia synthesis via non-thermal plasma presents advantages over the Haber-Bosch process, particularly for small-scale and distributed operations powered by intermittent electricity from renewable energy sources. We designed and characterized a membrane Dielectric-Barrier Discharge (mDBD) reactor for ammonia synthesis from nitrogen and hydrogen. The reactor used a porous alumina membrane as dielectric barrier and as distributor of H2. This arrangement enabled greater residence time for N2 decomposition together with greater H2 availability in the reaction zone, as assessed by a computational thermal-fluid model. We evaluated the reactor's operation with membranes of 0.1, 1.0, and 2.0 µm pore size and porosities between 25% and 51%, and also in conventional DBD mode using a non-porous dielectric. The experimental characterization of the reactor encompassed electrical, optical, and spectroscopic diagnostics, as well as Fourier-Transform Infrared Spectroscopy (FTIR) to analyze gas products, as function of driving voltage. The results show that both, ammonia production and power consumption, vary inversely with membrane pore size. The highest energy yield of 0.35 g-NH3/kWh was obtained with the 1.0 µm pore membrane, whereas the maximum yield under conventional DBD operation was three-times lower. Our findings demonstrate that the use of a membrane dielectric can enhance the performance of DBD-based ammonia synthesis.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3