Dual Representation Propagation Comparative Learning for Recommendations

Author:

Huang Huohui1,Fan Xin1,Tian Shengwei1,Yu Long1

Affiliation:

1. Xinjiang University

Abstract

Abstract

Graph neural networks combined with comparative learning have become a very popular paradigm in recommender systems. However, most methods still suffer from data sparsity, noise and difficulty in extracting multi-granularity information. To address these limitations, we propose a Dual Representation Propagation Comparative Learning(DRPCL) method, which uses propagation representations based on two rules to extract multi-granularity signals, including graph convolutional propagation pathway and message node propagation pathway. Where the message node propagation pathway extracts and integrates local and global signals. And the dual-pathway node representations generate misaligned contrastive views and denoising auxiliary supervision signals to mitigate the negative effects of data sparsity and noise. Experimental results show that our DRPCL is able to demonstrate performance superiority over other bases on different datasets. Some in-depth experimental analysis demonstrates the robustness of DRPCL against data sparsity and noise.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3