Unveiling the Effect of Composition on Nuclear Waste Immobilization Glasses’ Durability by Non-Parametric Machine Learning

Author:

Bauchy Mathieu1ORCID,Song Yu1,Lu Xiaonan2ORCID,Wang Kaixin1,Ryan Joseph2,Smedskjaer Morten3ORCID,Vienna John2

Affiliation:

1. University of California Los Angeles

2. Pacific Northwest National Laboratory

3. Aalborg University

Abstract

Abstract Ensuring the long-term chemical durability of glasses is critical for nuclear waste immobilization operations. Durable glasses usually undergo qualification for disposal based on their response to standardized tests such as the product consistency test or the vapor hydration test (VHT). The VHT uses elevated temperature and water vapor to accelerate glass alteration and the formation of secondary phases. Understanding the relationship between glass composition and VHT response is of fundamental and practical interest. However, this relationship is complex, non-linear, and sometimes fairly variable, posing challenges in identifying the distinct effect of individual oxides on VHT response. Here, we leverage a dataset comprising 654 Hanford low-activity waste (LAW) glasses across a wide compositional envelope and employ various machine learning techniques to explore this relationship. We find that Gaussian process regression (GPR), a non-parametric regression method, yields the highest predictive accuracy. By utilizing the trained model, we discern the influence of each oxide on the glasses' VHT response. Moreover, we discuss the trade-off between underfitting and overfitting for extrapolating the material performance in the context of sparse and heterogeneous datasets.

Publisher

Research Square Platform LLC

Reference61 articles.

1. Bergmann, L. M.; Golcar, G. R.; Praga, A. N.; Tilanus, S. N.; Bernards, J. K.; Hersi, G. A.; Hohl, T. M.; Jasper, R. T.; Mahoney, P. D.; Pak, N. K.; Reaksecker, S. D.; Schubick, A. J.; West, E. B.; Crawford, T. W. River Protection Project System Plan, Revision 9; United States, 2021.

2. Hanford Low-Activity Waste Vitrification: A Review;Marcial J;Journal of Hazardous Materials,2024

3. Machine Learning Enabled Models to Predict Sulfur Solubility in Nuclear Waste Glasses;Xu X;ACS Appl. Mater. Interfaces,2021

4. Pierce, E. M.; McGrail, B. P.; Bagaasen, L. M.; Rodriguez, E. A.; Wellman, D. M.; Geiszler, K. N.; Baum, S. R.; Reed, L. R.; Crum, J. V.; Schaef, H. T. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment; PNNL-15126; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL), 2005. https://doi.org/10.2172/15020690.

5. ASTM C1285-21: Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT). https://www.astm.org/c1285-21.html (accessed 2022-03-29).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3