Enzymatic synthesis of novel pyrrole esters and their thermal stability

Author:

Hu Jingyi1,Zhou Meng1,Zhang Yujie2,Zhang Xi3,Ji Xiaoming1,Zhao Mingqin1,Lai Miao1

Affiliation:

1. Henan Agricultural University

2. China Tobacco Hebei Industrial Co., Ltd.

3. China Tobacco Shanxi Industrial Co., Ltd.

Abstract

Abstract In the present work a simple enzymatic approach (Novozym 435) for transesterification to synthesize pyrrole esters was reported. To generate the best reaction conditions, which resulted in the optimum yield of 92%, the effects of lipase type, solvent, lipase load, molecular sieves, substrate molar ratio of esters to alcohol, reaction temperature, reaction duration, and speed of agitation were evaluated. The range of alcohols was assessed under optimal circumstances. The spectrum observations conclusively demonstrated that the compounds could be generated with high yield under the circumstances utilized for synthesis. The odor characteristics of the pyrrolyl esters obtained were examined by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Among them, compounds of benzhydryl 1H-pyrrole-2-carboxylate (3h), butyl 1H-pyrrole-2-carboxylate (3i) and pentyl 1H-pyrrole-2-carboxylate (3j) present sweet and acid aroma. In addition, the thermal degradation process was further studied using the Py-GC/MS (pyrolysis-gas chromatography/mass spectrometry), TG (thermogravimetry), and DSC (differential scanning calorimeter) techniques. The outcomes of the Py-GC/MS, TG, and DSC techniques show that they have excellent thermal stability.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3