Non‑intrusive polynomial chaos expansion for robust topology optimization of truss-like continua under random loads

Author:

Guo Xinze1,Zhou Kemin1

Affiliation:

1. Huaqiao University

Abstract

Abstract This paper dedicates to presenting an uncertain analysis framework for robust topology optimization (RTO) based on truss-like material model that integrates non-intrusive polynomial chaos expansion (PCE) approach. In this framework, the RTO problem is formulated as a bi-objective optimization one to simultaneously minimize the expectancy and its standard deviation of structural compliance with volume constraints. The magnitude and direction of load uncertainty are assumed to follow a Gaussian distribution independently. A standard non-intrusive PCE requires a large number of multivariate integrals to calculate the expansion coefficient. Therefore, response metrics such as structural compliance are efficiently characterized using the decoupling techniques based on the expansions of the uncertain parameters. The mechanical analysis and uncertainty analysis are separated, so that the number of simulations in the original PCE procedure is greatly reduced for linear structures by means of superposition. The optimization is achieved by gradient-based methods. The appreciable accuracy and efficiency are validated by the brutal Monte Carlo simulation. Three numerical examples are provided to demonstrate that the proposed method can lead to designs with completely different topologies and superior robustness.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3