Geography, phylogeny and host switch drive the co-evolution of parasitic Gyrodactylus flatworms and their hosts

Author:

Lei Hong-Peng1,Jakovlić Ivan1,Zhou Shun2,Liu Xiang1,Yan Chuan1,Jin Xiao3,Wang Bo4,Li Wen-Xiang5,Wang Gui-Tang5,Zhang Dong1

Affiliation:

1. Lanzhou University

2. Chinese Academy of Fishery Sciences

3. Guangdong Ocean University

4. Shapotou Desert Research and Experimental Station, Chinese Academy of Sciences

5. Chinese Academy of Sciences

Abstract

Abstract Background: Gyrodactylus is a lineage of monogenean flatworm ectoparasites exhibiting many features that make them a suitable model to study the host-parasite co-evolutionary dynamics. Previous co-evolutionary studies of this lineage mainly relied on low-power datasets (a small number of samples and a single molecular marker), and (now) outdated algorithms. Methods: To investigate the coevolutionary relationship of gyrodactylids and their fish hosts in high resolution, we used complete mitogenomes (including two newly sequenced Gyrodactylus species), a large number of species in the single-gene dataset, and four different coevolutionary algorithms. Results: The overall co-evolutionary fit between the parasites and hosts was consistently significant. Multiple indicators support gyrodactylids as highly host-specific parasites, but few gyrodactylids can parasitize either multiple (more than 5) or phylogenetically-distant fish hosts. The molecular dating results indicate they tend to evolve towards high host specificity. Speciation by host-switching is a more important speciation mode than co-speciation for them. Assuming the origin on Cypriniformes, we inferred four major host switch events to non-Cypriniformes hosts (mostly Salmoniformes) occurred deep in the evolutionary history. Despite their relative rarity, these events had strong macroevolutionary consequences for gyrodactylid diversity. For example, in our dataset, 57.28% of all studied gyrodactylids parasitised only non-Cypriniformes hosts, which implies that the evolutionary history of more than half of all included lineages could be traced back to these major host switch events. The geographical co-occurrence of fishes and gyrodactylids determined the host use by these gyrodactylids, and geography accounted for most of the phylogenetic signal in host use. Conclusions: In a sentence, our findings suggest that the co-evolution of Gyrodactylus flatworms and their hosts is largely driven by geography, phylogeny, and host switches.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3