Correlation functions between singular values and eigenvalues

Author:

Allard Matthias1,Kieburg Mario1

Affiliation:

1. University of Melbourne

Abstract

Abstract

Exploiting the explicit bijection between the density of singular values and the density of eigenvalues for bi-unitarily invariant complex random matrix ensembles of finite matrix size we aim at finding the induced probability measure on j eigenvalues and k singular values that we coin j,k-point correlation measure. We fully derive all j,k-point correlation measures in the simplest cases for matrices of size n = 1 and n = 2 . For n > 2 , we find a general formula for the 1, 1-point correlation measure. This formula reduces drastically when assuming the singular values are drawn from a polynomial ensemble, yielding an explicit formula in terms of the kernel corresponding to the singular value statistics. These expressions simplify even further when the singular values are drawn from a Pólya ensemble and extend known results between the eigenvalue and singular value statistics of the corresponding bi-unitarily invariant ensemble. MSC Classification: 60B20 , 15B52 , 43A90 , 42B10 , 42C05

Publisher

Research Square Platform LLC

Reference67 articles.

1. {Bardenet}, Remi and {Ghosh}, Subhro and {Lin}, Meixia (2021) {Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD}. Advances in Neural Information Processing Systems : 16226-16237 https://doi.org/10.48550/arXiv.2112.06007, 34, stat.ML, Statistics - Machine Learning, Condensed Matter - Disordered Systems and Neural Networks, Computer Science - Machine Learning, Mathematics - Optimization and Control, Mathematics - Probability, 2112.06007, arXiv, https://ui.adsabs.harvard.edu/abs/2021arXiv211206007B, Provided by the SAO/NASA Astrophysics Data System

2. {Ghosh}, Subhro (2015) {Determinantal processes and completeness of random exponentials: the critical case}. Probab. Theory Relat. Fields 163: 643-665 https://doi.org/10.48550/arXiv.1211.2435, math.PR, Mathematics - Probability, Mathematics - Classical Analysis and ODEs, Mathematics - Functional Analysis, 1211.2435, arXiv, https://doi.org/10.1007/s00440-014-0601-9

3. {Soshnikov}, Alexander (2002) {Gaussian limit for determinantal random point fields}. Ann. Probab. 30: 171-187 https://doi.org/10.48550/arXiv.math/0006037, math.PR, Mathematics - Probability, Mathematical Physics, Mathematics - Mathematical Physics, math/0006037, arXiv, https://ui.adsabs.harvard.edu/abs/2000math......6037S, Provided by the SAO/NASA Astrophysics Data System

4. Lal Mehta, Madan (2004) Random Matrices. Elsevier Science and Technology, San Diego, 142, Pure and applied mathematics series, eng, Random matrices, 0120884097, 3rd

5. Stefan Thurner and Christoly Biely (2007) The Eigenvalue Spectrum of Lagged Correlation Matrices. Acta Physica Polonica B 38: 4111-4122 https://www.actaphys.uj.edu.pl/fulltext?series=Reg &vol=38 &page=4111

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3