Abstract
Abstract
Miniaturized on-chip spectrometers with small footprints, lightweight, and low cost are in great demand for portable optical sensing, lab-on-chip systems, and so on. Such miniaturized spectrometers are usually based on engineered spectral response units and then reconstruct unknown spectra with algorithms. However, due to the limited footprints of computational on-chip spectrometers, the recovered spectral resolution is limited by the number of integrated spectral response units/filters. Thus, it is challenging to improve the spectral resolution without increasing the number of used filters. Here we present a computational on-chip spectrometer using electrochromic filters that can be electrochemically modulated to increase the efficient sampling number for higher spectral resolution. These filters are directly integrated on top of the photodetector pixels, and the spectral modulation of the filters results from redox reactions during the dual injection of ions and electrons into the electrochromic material. We experimentally demonstrate that the spectral resolution of the proposed spectrometer can be effectively improved as the number of applied voltages increases. The average difference of the peak wavelengths between the reconstructed and the reference spectra decreases from 14.48 nm to 2.57 nm. We also demonstrate the proposed spectrometer can be worked with only four or two filter units, assisted by electrochromic modulation. This strategy suggests a new way to enhance the performance of miniaturized spectrometers with tunable spectral filters for high resolution, low-cost, and portable spectral sensing, and would also inspire the exploration of other stimulus responses such as photochromic and force-chromic, etc, on computational spectrometers.
Publisher
Research Square Platform LLC