Integrated Transcriptome and Proteome Analysis Provides insights into CpFPA1 for Floral Induction in Chimonanthus praecox (Magnoliidae) without FLC in genome

Author:

Li Zhineng1ORCID,Hou Huifang2,Wu Chunyu2,Huo Juntao2,Liu Ning2,Jiang Yingjie2,Sui Shunzhao2

Affiliation:

1. Southwest University

2. Southwest University College of Horticulture and Landscape Architecture

Abstract

Abstract Wintersweet (Chimonanthus praecox), a rare winter-flowering woody plant, is well known for its unique blooming time, fragrance and long flowering period. However, the molecular mechanism of flowering in C. praecox remains poorly unclear. In this study, we used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud (FB) differentiation stages (FB.Apr, FB.May and FB.Nov) in C. praecox. The results showed that a total of 952 DEGs and 40 DEPs were identified. Gene ontology (GO) enrichment revealed that DEGs in FB.Apr/FB.May comparison group were mainly involved in metabolic of biological process, cell and cell part of cellular component and catalytic activity of molecular function. In the KOG functional classification, DEPs were predicted mainly in the function of general function prediction only (KOG0118), post-translational modification, protein turnover and chaperones. The autonomous pathway genes play an essential role in the floral induction. Based on transcriptome and proteome correlation analysis, six candidate genes associated with the autonomous pathway were identified, including FPA1, FPA2a, FPA2b, FCA, FLK, FY. The fold change of unigene0031805 FPA1 in mRNA and protein level reached over 5 and 1.5 in FB.Nov/FB.Apr and FB.Nov/FB.May; and that of which reached over 2.5 and 1.2 in FB.May/FB.Apr, respectively. Furthermore, CpFPA1 was isolated and functionally characterized, and ectopic expression of CpFPA1 in Arabidopsis Columbia (Col-0) resulted in earlier flowering. These data could contribute to understand the function of CpFPA1 for floral induction and provide information for further research on the molecular mechanisms of flowering in wintersweet.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3