Experimental study on effects of air injection on cavitation pressure pulsation and vibration in a centrifugal pump with inducer

Author:

Mao Yanhong1,Liu Houlin1,Wang Yong1,Chen Jie1,Liu Fei1

Affiliation:

1. Jiangsu University

Abstract

AbstractCavitation commonly induces performance deterioration and system vibration in many engineering applications. This paper aims to investigate the effects of air injection on cavitation evolution, pressure pulsation and vibration in a centrifugal pump with inducer. In this paper, the high-speed camera is used to capture the gas flow pattern and cavitation evolution process in the inducer. The impacts of air injection on the inlet pressure pulsation and vibration are also investigated. The results show that the cavitation development in the inducer undergoes four patterns: incipient cavitation, sheet cavitation, cloud cavitation and super cavitation. As the cavitation becomes more severe, the main frequency of the pressure pulsation shifts to lower frequencies, and the amplitude of the vibration increase. In addition, air injection promotes the incipient cavitation but delays the cavitation development. A small amount of air makes cavity shed with small-scale clusters. Meanwhile, it can effectively decrease amplitudes of pressure pulsation and vibration. As the air content increases, the fluctuations and amplitudes of pressure pulsation and vibration increase.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3