ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents

Author:

Nagiredla Kishan Reddy1,V Arun Kumar A1,Karimpanal Thommen George1,Semage Buddhika Laknath1,Rana Santu1

Affiliation:

1. Deakin University

Abstract

Abstract

Co-design involves simultaneously optimizing thecontroller and the agent’s physical design. Its inherent bi-level optimization formulation necessitates an outer loop designoptimization driven by an inner loop control optimization. Thiscan be challenging when the design space is large and eachdesign evaluation involves a data-intensive reinforcement learningprocess for control optimization. To improve sample efficiencywe propose a multi-fidelity-based design exploration strategy inwhich we tie the controllers learned across the design spacesthrough a universal policy learner for warm-starting subsequentcontroller learning problems. Experiments performed on a widerange of agent design problems demonstrate the superiority ofour method compared to the baselines. Additionally, analysisof the optimized designs shows interesting design alterationsincluding design simplifications and non-intuitive alterations thathave emerged in the biological world.

Publisher

Springer Science and Business Media LLC

Reference54 articles.

1. Elshawi, Radwa and Maher, Mohamed and Sakr, Sherif Automated {M}achine {L}earning: State-of-the-{A}rt and {O}pen {C}hallenges. arXiv preprint arXiv:1906.02287, 2019

2. Audet, Charles and Hare, Warren Derivative-free and blackbox optimization. Springer, 2017, 2

3. Lorenzo, Pablo Ribalta and Nalepa, Jakub and Kawulok, Michal and Ramos, Luciano Sanchez and Pastor, Jos{\'e} Ranilla Particle {S}warm {O}ptimization for {H}yper-parameter {s}election in {D}eep {N}eural {N}etworks. 2017, Proceedings of the genetic and evolutionary computation conference

4. Schulman, John and Levine, Sergey and Abbeel, Pieter and Jordan, Michael and Moritz, Philipp (2015) Trust region policy optimization. PMLR, International conference on machine learning

5. Schulman, John and Wolski, Filip and Dhariwal, Prafulla and Radford, Alec and Klimov, Oleg (2017) Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3