Landslide Hazard and Susceptibility Maps Derived from Satellite and Remote Sensing Data Using Limit Equilibrium Analysis and Machine Learning Model

Author:

Dashbold Batmyagmar1,Bryson L. Sebastian2,Crawford Matthew M.3

Affiliation:

1. Stantec (United States)

2. University of Kentucky

3. Kentucky Geological Survey

Abstract

Abstract Landslide susceptibility mapping and landslide hazard mapping are approaches used to assess the potential for landslides and predict the occurrence of landslides, respectively. We evaluated and tested a limit equilibrium approach to produce a local-scale, multi-temporal Geographic Information System (GIS)-based landslide hazard map that utilized satellite soil moisture data, soil strength and hydrologic data, and a high-resolution (1.5 m) LiDAR-derived digital elevation map (DEM). The final multi-temporal landslide hazard map was validated temporally and spatially using four study sites at known landslide locations and failure dates. The resulting product correctly indicated low factor of safety values at the study sites on the dates the landslide occurred. Also, we produced a regional-scale landslide susceptibility map using a logistic regression machine learning model using 15 variables derived from the geomorphology, soil properties, and land cover data. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) was used for the accuracy of the model, which yielded a success rate of 0.84. We show that using publicly available data, a multi-temporal landslide hazard map can be created that will produce a close-to-real time landslide predictive map. The landslide hazard map provides an understanding into the evolution of landslide development temporally and spatially, whereas the landslide susceptibility map indicates the probability of landslides occurring at specific locations. When used in tandem, the two mapping models are complementary to each other. Specifically, the landslide susceptibility mapping identifies the areas most susceptible to landslides while the landslide hazard mapping predicts when landslide may occur within the identified susceptible area.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3