Effect of Phospholipid Head Group on Ultrasound-triggered Drug Release and Cellular Uptake of Immunoliposomes

Author:

Awad Nahid S.1,Paul Vinod1,AlSawaftah Nour M.1,Husseini Ghaleb A.1

Affiliation:

1. American University of Sharjah

Abstract

Abstract Liposomes are the most successful nanoparticles used to date to load and deliver chemotherapeutic agents to cancer cells. They are nano-sized vesicles made up of phospholipids, and targeting moieties can be added to their surfaces for active targeting of specific tumors. Furthermore, Ultrasound can be used to trigger the release of the loaded drugs by disturbing their phospholipid bilayer structure. In this study, we have prepared pegylated liposomes using four types of phospholipids with similar saturated hydrocarbon tails and different head groups (DPPC and DPPA, DPPE, and DPPG). The prepared liposomes were conjugated to the monoclonal antibody trastuzumab (TRA) to target the human epidermal growth factor receptor 2 (HER2) overexpressed on HER2-positive cancer cells (HER2+). We have compared the response of the different formulations of liposomes when triggered with low-frequency ultrasound (LFUS) and their cellular uptake by the cancer cells. The results showed that the different formulations had similar size, polydispersity, and stability. TRA-conjugated DPPC liposomes showed the highest sensitivity to LFUS. On the other hand, incubating the cancer cells with TRA-conjugated DPPA liposomes triggered with LFUS showed the highest uptake of the loaded calcein by the HER2 + cells.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3