Organohydrogels with Adaptive Surface Wettability Enabled by Polyacrylamide/Polysiloxane Emulsion-based Heteronetworks

Author:

Wang Shaohua1,Yu Peng1,Li Xinjin1,Lin Huijuan1,Song Shasha1,Zhao Zengdian1,Dong Yunhui1,Li Xiangye1

Affiliation:

1. Shandong University of Technology

Abstract

Abstract

Hydrogel-based softmaterials have attracted significant attentions in various fields due to their high water content, good biocompatibility and variable mechanical strength. However, due to the hydrophilic properties of hydrogel networks, most of the hydrogel-based soft materials are easy to swell in water and have monotonous surface wettability. Here, taking advantage of the intrinsic hydrophobicity of siloxane, novel heteronetwork organohydrogels were synthesized by covalently integrating reactive siloxane monomers into the hydrophilic hydrogel networks through emulsion polymerization. The surface of the heteronetwork organohydrogels exhibited adaptive wettability owing to the rearrangement of the surface chemistry induced by different solvent condition. Moreover, the heterogeneous networks endowed organohydrogels with excellent antiswelling abilities in water or oil (n-heptanes). The potential application of the prepared organohydrogels in the field of oil/water separation was also preliminarily explored. The idea and method of integrating polysiloxane into hydrogels in this study might provide a new insight to develop high-performance polysilxane-based heteronetwork gel materials.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3