Quasi-Opposition-Based Learning in a Shuffled Particle Swarm Optimization for Solving Frequency Modulation Sounds Parameter Identification Problem

Author:

Ahandani Morteza Alinia1

Affiliation:

1. Islamic Azad University

Abstract

Abstract This paper proposes some novel versions of the shuffled particle swarm optimization (SPSO) for solving the frequency modulation sound parameter identification (FMSPI) problem. In the SPSO, a population is divided into several parallel groups and then each group is independently evolved in an evolutionary process using a particle swarm optimization (PSO). This paper employs two different strategies to prevent a premature convergence and providing a better balance between the exploration and exploitation abilities of the SPSO algorithm. Firstly, it proposes that we can use a separate strategy for the inertia weight factor parameter of each group in each iteration of the SPSO algorithm. For the second strategy to provide a deep search of promising areas, a quasi-opposition-based strategy is inserted in the SPSO. Experimental results on FMSPI problems show that new employed strategies reduction lead to achieving a more effective and robust algorithm so as it can considerably improve the performance of the SPSO.

Publisher

Research Square Platform LLC

Reference29 articles.

1. Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification;Yang B,2020

2. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries;Lai X,2019

3. Parameter identification of fractional-order chaotic systems using different meta-heuristic optimization algorithms;Yousri D,2019

4. Parameter estimation of MIMO bilinear systems using a Levy shuffled frog leaping algorithm;Kawaria N,2017

5. Jahandideh-Tehrani M, Bozorg-Haddad O, Loáiciga HAJEM (2020) Assessment. Application of particle swarm optimization to water management: an introduction and overview. ;192:1–18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3