Semi-automated seizure detection using interpretable machine learning models

Author:

Antonoudiou Pantelis1,Basu Trina1,Maguire Jamie1

Affiliation:

1. Tufts University School of Medicine

Abstract

Abstract

Despite the vast number of seizure detection publications there are no validated open-source tools for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient, error prone, and heavily biased. Here we developed an open-source software called SeizyML that uses sensitive machine learning models coupled with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning models (decision tree, gaussian naïve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian naïve bayes and stochastic gradient descent models achieved the highest precision and f1 scores, while also detecting all seizures in our mouse dataset and only require a small amount of data to train the model and achieve good performance. Further, we demonstrate the utility of this approach to detect electrographic seizures in a human EEG dataset. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.

Publisher

Research Square Platform LLC

Reference24 articles.

1. Basu, T., Antonoudiou, P., Weiss, G. L., Friedman, D., Laze, J., Devinsky, O., Maguire, J., & Ave, H. (2022). Hypothalamic-pituitary-adrenal axis dysfunction worsens epilepsy outcomes and increases SUDEP risk. BioRxiv, 2022.03.15.484525. https://doi.org/10.1101/2022.03.15.484525

2. Benjamens, S., Dhunnoo, P., & Meskó, B. (2020). The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. Npj Digital Medicine 2020 3:1, 3(1), 1–8. https://doi.org/10.1038/s41746-020-00324-0

3. High-frequency Oscillations after Status Epilepticus: Epileptogenesis and Seizure Genesis;Bragin A;Epilepsia,2004

4. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG;Chen D;PLOS ONE,2017

5. Comparison of different input modalities and network structures for deep learning-based seizure detection;Cho KO;Scientific Reports,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3