Enabling Magnetic Pulse Welding for dissimilar tubular arrester cable joints

Author:

Graß Markus1ORCID,Sommer Niklas1,Böhm Stefan1

Affiliation:

1. University of Kassel Faculty 15 Mechanical Engineering: Universitat Kassel Fachbereich 15 Maschinenbau

Abstract

Abstract Climate change exacerbates the need for resource-efficient and cost-effective production processes across manifold industries, including the field of electrical connections. This specific field is characterized by a conflict of objectives, i.e., weight reductions while maintaining joint strength and electrical conductivity. From a materials point of view, the use of aluminum as a conductor material is suitable for this application, as it is lighter than copper, a classical conductor material. Electrical conductors are often used in the form of flexible cables, so-called stranded wires. This type of conductor as well as the fact that the sole use of aluminum in electrical systems not feasible, e.g., because the predetermined connection terminals of power electronic components are made of copper, creates a substantial demand for dissimilar aluminum-copper cable arrester joints. However, traditional fusion-based welding processes have proved incapable of reliably producing these dissimilar aluminum-copper joints because of thermophysical effects and chemical incompabilities, the latter eventually leading to the formation of intermetallic phases. These phases adversely affect the quality of the joint in terms of both mechanical and electrical performance. Yet, magnetic pulse welding, a pressure welding process, is ideally suited for producing dissimilar metal joints on basis of a low energy input during the welding process. Consequently, the formation of intermetallic phases is restrained. However, magnetic pulse welding has not been sufficiently investigated for the reliable contacting of stranded cables to tubular arresters. As a result, this paper focuses on the fabrication of tubular stranded cable arrester joints using magnetic pulse welding. To shed light on possible material combinations, aluminum to aluminum and copper to copper joints as well as their dissimilar counterparts are welded. Subsequently, the joints are characterized with regard to their microstructure and quasi-static material strength. Electrical characterization comprises the four-wire Kelvin measurement method to evaluate the resistance of the electrical joints. The results demonstrate that magnetic pulse welding is ideally suited to join the aforementioned material combination and joint configuration due to its process characteristics eventually leading to material continuity. As a result, the stranded wires are welded to the tubular arresters rather than crimped. Consequently, a comparative analysis of the joint properties with those of the joining partners shows that the measured electrical resistances and mechanical tensile forces may be considered very good.

Publisher

Research Square Platform LLC

Reference15 articles.

1. Statista Research Department (2023) Anzahl der Elektroautos in Deutschland von 2006 bis April 2023. https://de.statista.com/statistik/daten/studie/265995/umfrage/anzahl-der-elektroautos-in-deutschland/. Accessed 07 Jun 2023

2. Braunovic M, Aleksandrov N (eds) (1992) Intermetallic compounds at aluminum-to-copper and copper-to-tin electrical interfaces. Proceedings of the Thirty-Eighth IEEE Holm Conference on Electrical Contacts

3. Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique;Kapil A;J Clean Prod,2015

4. Process window acquisition for impact welding processes;Groche P;Mater Design,2017

5. Particle Ejection by Jetting and Related Effects in Impact Welding Processes;Bellmann J;Metals,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3