Difunctional fluorescent probes for iron and hydrogen sulfide detection based on diphenyl derivative

Author:

Shang Xuefang1,Liu Bingqing1,Liu Lixia1,Wang Jia1,Wang Yingling1

Affiliation:

1. Xinxiang Medical University

Abstract

Abstract In order to better monitor the content of Fe3+ and H2S in the biological environment, two new fluorescent probes were designed and synthesized. With the addition of Fe3+, the strong fluorescence emission of two probes was significantly quenched due to the paramagnetic effect of Fe3+. After the addition of S2−, the fluorescence intensity of two probes was quickly restored. Two probes showed high selectivity and strong sensitivity for the detection of Fe3+ and S2−, and the fluorescence intensity “ON-OFF-ON” was accompanied with the interaction process. At the same time, two probes displayed good anti-interference ability which was not interfered by the existence of other ions. In addition, two probes illustrated fast response time to Fe3+, S2− and small cytotoxicity to cells. Therefore, two probes can provide a potential ideal tool for detecting Fe3+ and H2S in organisms and the environment.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3