Demonstration of Breast Cancer Detection Using QSVM on IBM Quantum Processors

Author:

Shan Zheng1,Guo Jiayu1,Ding Xiaodong1,Zhou Xin1ORCID,Wang Junchao1,Lian Hang1,Gao Yufei2,Zhao Bo1ORCID,Xu Jinchen1

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing

2. Zhengzhou University

Abstract

Abstract Support vector machine(SVM) is one of the most popular machine learning(ML) methods which are widely used as the methodology of choice in Breast Cancer detection because of its unique advantages in critical features detection from complex breast cancer datasets. Quantum support vector machine(QSVM) uses the power of quantum mechanics to improve the performance of classical support vector machine(SVM) algorithms with theoretical acceleration advantage. However, it still suffers from the wide error problem and hardware limits in Noisy Intermediate-Scale Quantum computing(NISQ). Consequently, we propose a quantum kernel estimation method with measurement error mitigation and test it using the Wisconsin Breast Cancer database first on the IBM quantum processors. The experimental results show that we can achieve remarkable performance improvement in accuracy for solving such binary classification problems compared to state-of-the-art models, which shows the great potential for the design and implementation of machine learning algorithms with quantum advantages in the future.

Publisher

Research Square Platform LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3