Heterojunction Assembled CoO/Ni(OH)2/Cu(OH)2 for Effective Photocatalytic Degradation and Hybrid Supercapacitor Applications

Author:

Mohapatra Subhashree1,Das Himadri Tanaya1,Tripathy Bankim Chandra2,Das Nigamananda1ORCID

Affiliation:

1. Utkal University

2. Council of Scientific and Industrial Research Institute of Minerals and Materials Technology Department of Hydro & ElectroMetallurgy

Abstract

Abstract Mixed multimetallic-based nanocomposites have been considered a promising functional material giving a new dimension to environmental remediation and energy storage applications. On this concept, a hybrid ternary CoO/Ni(OH)2/Cu(OH)2 (CNC) composite showing sea-urchin-like morphology was synthesized via one-pot hydrothermal approach, and its photocatalytic and electrochemical performances were investigated. The photocatalytic performance was explored using Congo red (CR) as a dye pollutant under visible light illumination. The presence of mixed phases of ternary metal ions could minimize the recombination efficacy of photogenerated charge carriers on the basis of the heterojunction mechanism, resulting in 90 % degradation of CR dye (40 mg L-1). The effect of scavengers coupled with electrochemical experiments revealed O2-. radical as the predominating species responsible for the degradation of CR. From the electrochemical analysis of CNC, the well-distinguished redox peaks indicated the battery-type behaviour with a specific capacity of 405 C g-1. For practical applications, a hybrid supercapacitor (CNC(+)|KOH|AC(-)) was assembled furnishing an energy density of 42 W h kg-1 at a power density of 5160 W kg-1 at 5 A g-1 along with a high capacity retention and coulombic efficiency of 98.83 % over 5000 cycles.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3