Excitation of tunable terahertz radiation from a mixture of nanoparticles in static magnetic field

Author:

Simon Moses1,Chauhan Prashant1

Affiliation:

1. Jaypee Institute of Information Technology

Abstract

Abstract This communication deals with the analytical study of terahertz (THz) generation via beat-wave mechanism of two circularly symmetric Gaussian laser beams with frequencies \({\omega }_{1}\) and \({\omega }_{2}\) and wave vectors \({\overrightarrow{k}}_{1}\) and \({\overrightarrow{k}}_{2}\)simultaneously propagating through a mixture of spatially corrugated noble-metal nanoparticles (NPs). The mixture, consisting of spherical and cylindrical nanoparticles, is placed in argon gas under the influence of a static magnetic field. The two co-propagating laser beams impart a nonlinear ponderomotive force on electrons of the NPs, causing them to experience nonlinear oscillatory velocity. Further, the consequent nonlinear current density excites terahertz radiation at the beat frequency \(\omega (={\omega }_{1}-{\omega }_{2})\). Magnetic field influences the surface plasmon resonance condition associated with electrons of the nanoparticles due to enhancement in ponderomotive nonlinearities, thereby causing an increment in the amplitude of generated THz field. It is observed that the generated THz radiation has a strong dependence on the shape and size of the NPs in addition to the magnetic field strength. Cylindrical nanoparticles provide greater THz amplitude than spherical nanoparticles due to additional resonance modes, and combining both kinds of nanostructures further enhance the amplitude. THz radiations play an important role in biomedical and pharmaceutical fields, communications, security and THz spectroscopy.

Publisher

Research Square Platform LLC

Reference46 articles.

1. A. Leitenstorfer, A. S. Moskalenko, T. Kampfrath, J. Kono, E. Castro-Camus, K. Peng, N. Qureshi, D. Turchinovich, K. Tanaka, A. G. Markelz, M. Havenith, C. Hough, H. J. Joyce, W. J. Padilla, B. Zhou, K.-Y. Kim, X.-C. Zhang, P. U. Jepsen, S. Dhillon, M. Vitiello, E. Linfield, A. G. Davies, M. C. Hoffmann, R. Lewis, M. Tonouchi, P. Klarskov, T. S. Seifert, Y. A. Gerasimenko, D. Mihailovic, R. Huber, J. L. Boland, O. Mitrofanov, P. Dean, B. N. Ellison, P. G. Huggard, S. P. Rea, C. Walker, D. T. Leisawitz, J. R. Gao, C. Li, Q. Chen, G. Valušis, V. P. Wallace, E. Pickwell-MacPherson, X. Shang, J. Hesler, N. Ridler, C. C. Renaud, I. Kallfass, T. Nagatsuma, J. A. Zeitler, D. Arnone, M. B. Johnston, and J. Cunningham, J. Phys. D: Appl. Phys. 56, 223001 (2023).

2. C. Sirtori, Nature 417, 132 (2002).

3. A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, Drug Invention Today 5, 157 (2013).

4. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, J. Phys. D: Appl. Phys. 50, 043001 (2017).

5. H. Aghasi, S. M. H. Naghavi, M. Tavakoli Taba, M. A. Aseeri, A. Cathelin, and E. Afshari, Applied Physics Reviews 7, 021302 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3